Packing sequences

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Packing of Graphic Sequences

Let π1 and π2 be graphic n-tuples, with π1 = (d (1) 1 , . . . , d (1) n ) and π2 = (d (2) 1 , . . . , d (2) n ) (they need not be monotone). We say that π1 and π2 pack if there exist edge-disjoint graphs G1 and G2 with vertex set {v1, . . . , vn} such that the degrees of vi in G1 and G2 are d (1) i and d (2) i , respectively. We prove that two graphic n-tuples pack if ∆ ≤ √ 2δn− (δ−1), where ∆ ...

متن کامل

Strip Packing vs. Bin Packing

In this paper we establish a general algorithmic framework between bin packing and strip packing, with which we achieve the same asymptotic bounds by applying bin packing algorithms to strip packing. More precisely we obtain the following results: (1) Any offline bin packing algorithm can be applied to strip packing maintaining the same asymptotic worst-case ratio. Thus using FFD (MFFD) as a su...

متن کامل

On Open Packing Number of Graphs

In a graph G = (V,E), a subset $S⊂V$ is said to be an open packing set if no two vertices of S have a common neighbour in G. The maximum cardinality of an open packing set is called the open packing number and is denoted by $ρ^{o}$. This paper further studies on this parameter by obtaining some new bounds.

متن کامل

Packing Graphs: The packing problem solved

Abstract For every fixed graph H, we determine the H-packing number of Kn, for all n > n0(H). We prove that if h is the number of edges of H, and gcd(H) = d is the greatest common divisor of the degrees of H, then there exists n0 = n0(H), such that for all n > n0, P (H, Kn) = b 2h b n − 1 d cc, unless n = 1 mod d and n(n − 1)/d = b mod (2h/d) where 1 ≤ b ≤ d, in which case P (H, Kn) = b 2h b n ...

متن کامل

A tight Analysis of Brown-Baker-Katseff Sequences for Online Strip Packing

We study certain adversary sequences for online strip packing which were first designed and investigated by Brown, Baker and Katseff (Acta Inform. 18:207– 225) and determine the optimal competitive ratio for packing such Brown-BakerKatseff sequences online. As a byproduct of our result, we get a new lower bound of ρ ≥ 3/2 +√33/6 ≈ 2.457 for the competitive ratio of online strip packing.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 1984

ISSN: 0097-3165

DOI: 10.1016/0097-3165(84)90003-7